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A REFINED THEORY OF ANISOTROPIC
SHELLS

8. AA. Ambartsumyan (Yerevan)

1. In this work is constructed a new refined theory of

anisotropic shells which 1s based on the followlng assumptions:

a) when defining deformations © and eay is considered that

shearing stresses TdY and TBY are not distinguished from the

appropriate stresses Ty ° and TBYO, found from the classlcal theory;

b) deformation eY and normal stress OY are not distinguished

from the appropriate values (eY°, GY°) of the classical theory.

As usual, the shell is related to a triorthogonal system of
curvilinear coordinates o, 8, vy, where y is the rectilinear co-
ordinate normal to the middle surface of the shell. At every

point of the shell there is only one plane of elastic symmetry,

parallel to the middle surface. The displacements of the shell

are small, while deformations are subject to the generalized
Hooke's law for an anisotropic body. The accepted here unspecified

designations have been taken from works [1, 2].

The distinction of the proposed theory from earlier known
theories 1s here there is no widespread hypothesis about the
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independence of normal displacement uY cn coordinate v.

-4

Taking hypotheses a) aﬁd b), which are actually approximately,

1t is assumed that

] . v "
Vay ©* Tays Yy Tpyo Oy Gy Cay ™ Cay, Chy “Chy, € Oy (1.1)

Finally, iet us say that if we treat the classical theory as
the zero approximaticn, the proposed theory can be considered as
the subsequent first approximation.

2. From the classical theory [1] for stresses Tay°, TBYO’

and oy° we have (PFig. 1).

Fig. 1.

Xk o Xad (B — 1),
=Y+ LY+ ;—-(~—~7‘)%
30 =2y Tz. = (= 1) 7 (B0 + (Al ~ (2.1)

€[ At
- 7;5‘("7,‘ - 1‘) (R M® - kg M)
In expressions (2.1) the following designations are used:

S X=X Yy = (Y = V), 2 =y (2 —2)

Ne=X*4+ X% Yo=Y 4V, 2, =2"+24- (2.2)

o= = =i (VAT Baall s + A pl(Bua) + (Bl (Bl — Bals(Bys))
fue = 712?? {UBLy (Bagla i+ Baly(Bas) + (Als(133)) 0 — Aply(By)) w, (2.3)

FTD~MT-24-1699-71 «
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l‘,'o == [)uulo + Dmn.f + D“‘l'°, H° = Dl.nlo + D'.‘. “20 + D.Crb
o [< I ] o 2 ¢
M." 5 Degts® + Dyg#y® 4+ Doit®s D = Yy B (2:5)

Here Bik — elastic constants; Mi°, H® — internal moments,

h — the thickness of the shell, Dik ~ the stiffness of the bend,
K;°, 7% — the changes in curvature, and twisting.

o

It is evident that all magnitudes with subscripts zero
represent the classical theory.

Further, from the classlical theory, according to the general-
ized Hooke's law, for deformations we have

ez; = X*.L —E-X' -;--i-(_:. — .vz)(plo

, ) . (2.6)
Chy =3 Y"+—Z—)” + ':"_,-"‘h:‘—‘ - Tz)wio
’ o "o 4 ] 2
& = o= (81aT1° 1 @01y + 84 87) - T';"a‘ (@12 M1° 4 agadMy° -+ a3eH°) —
nt '
- L2 ) 2 (Bgoha + ()l -
- (% "r‘)a (a4 M%) - 6 {2, 2 - 5 (2.7
o\ — 93 (Ry M ° 4 kyi :)—w-aaa\éx':"',,"‘l) i
Reprod
where , besfr%v‘;ciﬁir:r"c'zpy. =y
X* =auX, +aiYy X' =ayX, + awYs @F =49, + aie¥o
(2.8)
Y®=gqu,Y, + a5 Xy, Y = a,Y, + a5 Xy O = a, + APy
I = Cut® + Ciaes® + Cra0®, 8° = Cpa8)® + €y + Cogtt®
(2.9)

w o [
1'3 = Cn(“zo -+ C,,c," - C._'e(t)o, C(k'-’hBik
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‘Here ay — elastic constants; Ti°, S° — internal tangential

forces, Cik — elongation hardness, ei , W° — the relative defor-
mations of elongation and shear.

3. Using the geometric equations of the theory of elasticity,

according to (2.6), (2.7) for the displacements of any point of
2,2

the shell, with an accuracy of 1 % ki h® ~ 1 we obtain

Uy == w0 TT# -+ 713[‘ 4 7!1{‘ + T‘N.

u¢=u“+kﬂ')""'fA :;"; —--—.(j_.l/.k! )J__%%___ (3‘1)
(1= B el ) o
: ]
— T+ Aot rlt+ L) e L1+ 40 (3.2)
Up=v(1 +ket)— 171 "5“?%'——%—’-(1-.."_’;1)__:?. ,301‘;- _
: | ku ”
- F A s e

....’:( k’7)®g+7(1+k«)}’*+%(i+ kﬂ)Y

u(a, B), v(a, B), w(a, B) — the desired displacements of the
middle surface of the shell

e

e 3o 303\ 208 ot g2y, M* = 7?5' ”o__ g aJ:,Q° + am

3 (3.3)
Ke=SRE, N0
1° = ayT1° + 027" 4 205, M == aygM\° + 8 M3 + agdll°
», o . )
Q° b (Ba)a+ (Adal, K= b - kadly (3.1)

Examining formulas (3.1), (3.2) we note that, unlike all re-
fined theories of the class in questicn, the geometric model of
deformation of a shell here is such that all components of the
displacement of some point of the shell depend nonlinearly on
coordinate v. In this case both all desired displacements u(a, B),
v(a, B), w(a, B), as well as the known functions T°(a, B8)...

N#(a, B8), which are defined according to the classical theory, will
he functions only of curvilinear coordinates « and 8.
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Having the values of U Ugs uY, with the help of the
geometric cérrelations of the three-dimensional throry of elas-
ticity it 1s easy to determine the strain componenis €y eB, eaB'
The indicated deformations, on the strength of (3.1), (3.2), are
represerited in the form of polynomials in powers of y, namely:

¢ =t + 5% + v, + v,
ep =& + y2,* + v, + Y0,
€ap == O -+ YT ¥ + Y 4 PR

(3.5)

The expansion coefficient €qeee A not given here can be
written by the usual method.

3 4 SOEOT IO O N SR

LB i

Examining the expansion ratios we note that, even if we are
restricted to two members of expansions (3.85), we will not obtain
the results of the classical theory, since thne expansion ratios
are basically distinguished from the appropr‘ate coefficients of
the classical theory. Here the coefficientsc Ki*, t*% along with
common members, which represent changes in curvature and the

Pyt St > oty o \!ﬂ-m £ Sang AR Ry

% twisting of the middle surface of the shell, contain new elements
2 of lateral deformations e

ay’ gy Sy
I, Solving the equations of the generalized Hooke's law

relative to the caiculated stresses, according to (2.1), (3.5) we
obtain

O+ Buay - Byuay + Byea' + v (Byby + Byby + Byb') +
I Y (Byey + Byyey + Byee’) + ¥° (Byyd; + Biydy + Byed')

04 . Buny 4+ Byuay + Bya’ + § (Byb, - Byby + Byeb') + (h.1)
¥ (Bagey + By 4 Dage’) + ¥ (Bagdy + Byody + Byed')

Toi - Mty -t Byau, o+ Bya' + v (Byyby + Byeby + Beo') -+
4 ¢ (”ucn +4- Bu“s - Bacc') + ‘Y"' (Budx -} ngd-, -+ Bud')
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Wwhere

By = (ay0i — as®)Q, By = (a),05¢ — 0458,0) 7

By, = (aytee — a,e*) @7, Byy = (10010 — a1,050) 7

Bes == (anayy — a,3") Q' By, = (34030 — 033045) Q! (4-2)
Y =(antyy = 813%) aes — 2a,40,485¢ ~ 811048 ~ G330,¢
a,::e‘—-.am(Z,-—-.j%l\”), a'=¢o—a,.(Z1-- -.?,-‘-K°)
bl=“l""a!3(%'—"-_,:';'oo)o b’=—-r‘——aao(5’7"'--—=f-;-0°)
€y -t Ny = By -;‘—',— K, ¢ v--ay -;;3‘ R*
di Wane @0, A A—ay (4.3)

Thus, by formulas (4.1) we calculated stresses in the shell.
These stresses change according to a nonlinear law through the
shell. Howevér, often in formulas (4.1) it is possible to be
restricted to only the first two groups of terms, i.e., it is
possible to assume a linear law of stress distribut;on Oy OB’ TaB
through the shell.

The stresses o GB’ TaB have statically equivalent internal
forces and moments, which will be defined by the formulas

Ty == Cymy + Cramy 4+ Cyor + ky (Dyyity - Dygny + Dyof)
Ty = Coamy + Cyamy -1 Cour + by (Dygng + Doy + Dags)

(h.h)
S‘ -‘-:COI’. + Cl.ml + c.o’n:g + ll‘g (D.gs + I)lgnl + I)’o":.-)
8y .- Cowr -+ Cyomy + Cogmy A+ by (Dess + Dyany - Daetty)
Jll =z I)ll"l + Dl’na + chs + k’ (Dllql + Dllqﬂ + Dl‘p)
M; -z Dyyng + Dygny + Doss + by (Dyaqy + Dygyy + Doep)
Hy = Dys + Dygny + Dyeny+ by (Daap + D440 + Diety) (4.5)

Hy = Doyt 4 Dygnyt Daeny 4 ky (Do p + Dysgy + Dyegy)
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where the following designations have been introduced:

_ ko ke R T
'"‘—a‘+ﬁc(—e(+ﬁ'n(_a{.(zl——h—l( )

":“"f'.‘—‘c':‘“)'*'"'!r'v—au(zn-‘-7'.-K°)

n.==b¢+%,’:,i(h=“t'+'%»’.i,z"ﬁt““'ﬂ\/’f‘.‘z"'%w)

3=b'-‘-%(1’ -.-.t“-}-%,!‘":-l——ano(‘}"‘Z’ ___";_‘(':_()0)

g ag - %;’:;‘ci - e‘_i__:_l_’:;m_am('zl—-%l\'d) (4.6)
» .a'.;._:_‘_:_::_p' o - -::;,—l:\r'“'aaﬂ(zl—".'%;?l\“)

5. Examining the above-derived formulas, equations and corre-
lations we note that all calculation values of the shell are a
function of three desired displacements u, v, w. Besides the
aesired ones they also contain certain new elements which, accord-
ing to the given formulas, are determined from the solutions to
the appropriate problem of a shell from the classical theory. (All
these elements are disignated by "o.")

To get resolvent equations, to the derived ones we should add
the equilibrium equations, the correlations of the continuity of
deformations of the middle surface, and boundary conditions. These
all differ in no way from the appropriate representations of the
classical theory. .

6. If for a shell the coefficients of the first quadratic
form A, B and the curvatures of the middle surface Ky k2 are
constant or, with sufficiently high accuracy, behave as constants,
then with the accuracy of the technical theory of shells [1] we
obtain the following resolvent equations relastive to the de:iired
displacements:
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i ‘ In(Codu -T2 (C) v + Iqa(Cp)w = — X — 1
— 2 (Po 5 B+ Pt ) Py 2 g T (6.1)
¢ | , Fa(Co)o+ ’42((\/.)“ gy (Cp)w = =¥V — t
1 (P,.; et Put B Py T i ) (6.2)
" Ina (Codu -+ Ly (Cid v + Ly (D)0 2 — '—:f" (Puyky -+ Pysls) K2 - ‘

3 ' h? ) o 0 e '
3 \ -y [En(Du)‘Dx°+ Ly (Dy) %] - ,“ sor Py (Pi) Q° <+ Py(Dyk) T* — C o

; Pn (Pu) Zy + h(Pyiky - Poaks) 4y — Ey (D) X* + Ey (D) Y* (6.3)

where

I

.
Py = Byays + Baay, 4 Bieags

Py =Byyyy + Byaayy + Bytas

{’: Pos = Buayy -+ Byayy + Byeany

where for linear operators we have

in

5 Fidb) = By n': ol e~ lll 203 L

T N
. . . t L )
3 7 + (Byy + 2Be) ~m 5o 7+ By v e
. 1 a r  »

; Es(Bu) = Bas g 5w - 3By it gamam ‘
i 1 »
+ (B - 2Be0) o h’.-l‘ awaa + Bz
5 . C“ o> (‘m i GM oc

’l; Ina(Co) = Zr g + 2 i axag + 5 ugE

Y —_ C'."‘ 03 ', (‘-n l’” C.-“ 0

Faa(Con) = =i -+ 235 Ty + oo

(€)= G P Crt G B G

! I (Cad = 5 o + =2y Toxay VST Ay

I3 (Cii) = (i Cy - /“'Cx")"“'— (kiCya = keCue) =5 U e
Lan(Cix) = (koCsa + I, C )_L;'. 1= (kgllgg 4 1,C )_'__'7_.

e sk vebag - Mbae) = T 1 (Balaae - Inlae) 70 43

3: e h

4 lsa(Dix) = Dy —¢ A‘ =7 A= Aa" ,;,a(.é T 2D+

3 + 2Dgg) s ot Gy = Dy :
+ 2Des) 7o Jaigps - 1H2e _ﬁ}-’ Jx .;,za + Do 7«77?_'3?"'

3 L (By3Cyy - 20ikaC g - 1en?Con)

E:

3 .
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a1 a3 B add

N 1 a3 ] 1
Py(Pyy) == p“./.ﬁ s 21),5—_,,7,-

[

Fa(Dudy) = (Dyyher + Dyohy) 7:“7,%' i+ (Daaler +

a2 B I
-+ Dn"x)',";?‘;fﬁ?"*‘ 2(Drekr + Dagksa) A!u d:: Jg

The desired functions u, v, w (and thus all calculated values)
should be determined from system of equations (6.1)-(6.3) whose
left sides differ in no way from the left sides of the appropriate
equations of the classical theory. As concerns the right parts of
these equations, they are distinguished in principle from the right
parts of the appropriate equations of the classical theory. Here,
along with common load members X, Y, Z there are also certain
reduced loads which are constructed with the help of the solutions
to the appropriate problem of the classical theory.

7. Let us examine the problem of an axisymmetrically loaded
orthotropic circular cylindrical shell, freely supported on its
ends and supporting a normally applied load which changes across
the surface of the shell according to the law Z = Z+ = q sin wa/l

(1 — the length of the shell, q ~ the intensity of the load in the
central section of the shell) (Fig. 2).

|
) R
9
Jo_ L. _....._9 1% Fig. 2

I

by e

’

For the desired functions w = w(a) and F = F(a), through
which all calculated values of the problem are represented, we
obtain

FTD-MT-24-1699-71 9
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A hni? n?Bnh*R
4 w=wo[1+A+ B] F= Fo[1+A+-—-L—B]
, T (‘OQR 12‘2
: alfnsanltht ey Pulthd o N Byl
b 4= 9uq ] L O Y I +
'_' ““2'-'“33313"‘ Rlag B1oh® a2l ht
1 %[ | 2WBR 120
k - ﬂ‘a:gB ;hﬁ a3y
& B = —(a33Pyy + ﬂupn) l._-‘-‘-l_ll—— - i .
3 hR
E: [ ’ =1 + 12 Bllaﬂ T
3 Let us examine a numerical example of a transversally isotropic
3 shell [1]. The results of the calculation of values w/w and
g F/FO at different values of the ratios e = E/E' and g = E/G', when
: v=v'"=20,3, R/l = 1, h/l = 0.2, are found in the table. 1In each
; block the upper numerals relate to w/wo, and the lower — to F‘/F0
%
§ Table -
:E e g.u. 0.0 g =20 Kz 00 £ = 10,0 .
4 1,0000 1,0285 1.0713 1,142
0.0 10000 | 1.025 | 1.0M3 | 10426
3 .
. 0.0591 09876 1,040 1.1017
3 1.0 0.9949 1.0234 1.0662 1.1375
: ' o.0181 0.9466 0.0805 | 1.0008
'2'0 0.9808 | 1.0183 10611 R
0.7954 0.8240 0.8667 | 0.9380
5.0 0.9746 | 0.9969 1,050 1.4472
]

Examining the table we note that wlth strcng anisotropy,
disregard of the rhenomena associated with lateral deformations
can lead to substantial errors. It is interesting to note that in
certain cases the correction due to consideration of eY can exceed
that due to consideration of transverse shears.
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